Journal Big Data
Artificial Intelligence

WWW.JBDAILORG

ISSN: 2692-7977
JBDAI Vol. 3, No. 1, 2025 DOI: 10.54116/jbdai.v3i1.50

IMPROVING LARGE LANGUAGE MODEL (LLM)
PERFORMANCE WITH RETRIEVAL AUGMENTED GENERATION
(RAG): DEVELOPMENT OF A TRANSPARENT GENERATIVE
ARTIFICIAL INTELLIGENCE (GEN AI) UNIVERSITY SUPPORT
SYSTEM FOR EDUCATIONAL PURPOSES

Nishitha Chidipothu Rick Anderson
Rutgers University Rutgers University
nc795@scarletmail.rutgers.edu rick.anderson@rutgers.edu
Jim Samuel Alexander Pelaez
Rutgers University Hofstra University
jim.samuel@rutgers.edu alexander.pelaezChofstra.edu
Julia Esguerra Md Nurul Hoque
Rutgers University Rutgers University
jueb@scarletmail.rutgers.edu nurul.hoque@ejb.rutgers.edu
ABSTRACT

This study works on the development of a generative artificial intelligence (Al) university support
system (GenAI-USS) by improvising retrieval augmented generation (RAG) architecture to
improve the performance of large language models (LLM) in a way that supports stepwise transpar-
ency. We aim to achieve better transparency and flexibility, and improved accuracy of responses to
queries based on university data assimilated from university webpages and knowledge sources. We
use RAG to develop a plug-and-play mechanism, along with prompt selection to boost LLM accu-
racy. One of the key components in our GenAI-USS is the capture and integration of real-time
information via live retrieval into the generative Al process. This domain-specific knowledge assim-
ilation with real-time updates to capture changes and new information serves as a specialized
dynamic expert knowledge database for RAG. Our RAG mechanism pulls in relevant, up-to-date
information from the dynamic database, which pulls real-time data from targeted predetermined
knowledge sources. The other key component in our GenAI-USS design is the deliberately

102

JBDAI Vol. 3 No. 1, pp. 102-122/2025

designed information processing visibility at each stage of the process to ensure full transparency,
and this includes the following: overview, data collection, storage encoding, testing, chatbot interac-
tion, and search. The testing module allows for interactive viewing of generated responses and their
sources. Our strategy is expected to lead to higher-quality Al-generated output via targeted informa-
tion retrieval, hallucination mitigation, accuracy improvement, and timely data updates. Essentially,
on the submission of a query, the RAG-dependent GenAI-USS first identifies the most relevant
information from the specialized expert knowledge database and then factors this into the generative
Al response development process. This results in a successful implementation of our primary objec-
tives of a transparent and flexible user-choice—driven RAG-based generative Al system, which also
provided heuristically notable improvements in the quality of output produced.

Keywords generative artificial intelligence, large language model, retrieval augmented generation, NLP, NLU,
NLG, Al, DSS, Chatbot, transparency, ethics, education.

1. Introduction

Textual data presents us with an array of opportunities for creating artificially intelligent innovations (Garvey et al.
2021). In recent years, there has been a significant increase in the amount of unstructured textual data being lever-
aged to glean business insights from textual data distributions and models (Samuel et al. 2020a; 2022). Substantial
advancements in natural language processing (NLP) and natural language understanding have led to the develop-
ment and adaptation of large language models (LLM) for a broad range of applications (Samuel 2023). These
models are trained on vast amounts of data to model probabilistic associations between tokens to serve as a machine
“brain,” which can then be used for actions such as interpreting and answering human questions (IBM 2023).
LLMs depend on the “transformer” model architecture that features self-attention mechanisms, which enables them
to learn at a significantly accelerated pace compared with conventional models (CloudFare 2024). LLMs are a sig-
nificant part of the basis for generative artificial intelligence (Gen Al) for text and language generation capabilities,
leading to a new wave of Al technologies and applications (Samuel et al. 2024a). Human queries or questions serve
as unstructured input, and the LLLMs have the capacity to generate output via probabilistic associations of word
sequences. The quality of LLM responses depends on the training data, occasionally resulting in “hallucinations,”
in which the model produces spurious answers, leading to wrong and often wild responses to human users (Xu
et al. 2024).

The introduction of OpenAI’s ChatGPT (https://openai.com/) and Google DeepMind’s Gemini (https://deepmind.
google/technologies/gemini/) has given an opportunity to the general public to derive answers to queries that may
not be readily available on traditional search tools such as Google (OpenAl 2024; Google Deepmind 2024). Trans-
formers are used in building LLMs, which can deal with human language and various tasks related to NLP, such as
machine translation (Anderson et al. 2024). LLMs have shown unparalleled prospects and capacity for innovations
in Al applications, leading to the development of numerous enhanced NLP methods and tools. As an illustration, it
has been shown that LLMs can improve the scope of NLP functions such as emotion classification and sentiment
analysis for public sentiment perception (Alan et al. 2024; Samuel et al. 2020b, 2024b). Popular LLMs are generally
referred to as foundation models and have outstanding “emergence” and “homogenization” capabilities (Samuel
2023; Tam 2023). Here, emergence refers to the potential for spontaneous and organic discovery of surprising fea-
tures and possibilities with LLMs, and homogenization refers to the capability of LLMs to increasingly serve as a
common platform for various Al applications. However, these Gen Al tools also have their respective drawbacks,
including the potential for misinformation, hallucination, and harmful content generation. Next, we discuss some
known challenges and risks associated with these technologies.

A significant challenge of LLMs is their tendency to generate factually inaccurate, meaningless, and absurd infor-
mation, although seemingly credible, also known as hallucination (Li et al. 2023). This issue is particularly concern-
ing in contexts in which factual accuracy is critical, such as for news reporting and academic research. LLMs can
subtly alter factual information while maintaining a seemingly credible narrative, as demonstrated in one of our
experiments. In this case, an LLM-based generative system provided a fairly believable narrative about a historical
event that it specified as occurring on Monday, October 21, 2014. Although all other facts were correct, the date
was inaccurate: October 21, 2014, is actually a Tuesday, not a Monday, as specified by the LLM. This subtle distor-
tion highlights the reliability challenges of LLMs in factual applications.

Another challenge is in keeping the knowledge base of the LLMs updated in real-time. Without continuous updates,
these models rely on outdated information that leads to erroneous answers to simple questions such as “Who is the
current president of the United States?” LLMs trained on largely historical data may not sufficiently incorporate

103

https://openai.com/
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/

JBDAI Vol. 3 No. 1, pp. 102-122/2025

contemporary events or real-time developments and fail to adapt to the rapid changes in real-world information
(Yu and Ji 2023; Duan et al. 2023). Furthermore, overleveraging could lead to dependency on LLM-based tools
and associated harms, such as diminished intellectual capabilities for students in academic environments, resulting
in ethical dilemmas for educators. Necessary guidelines and strategies must be implemented by policymakers to
foster genuine learning and mitigate the disadvantages that lead to ethical and practical challenges (Das 2024).

The challenge of LLM-generated inaccuracies, hallucinations, and other errors can be significantly mitigated by the
use of retrieval augmented generation (RAG) methods, which have become popular in the recent past. A key advan-
tage of RAG is its ability to maintain current knowledge by directly encoding website content, which can be
refreshed as source material changes. Because the LLM summarizes data directly from the vector store, responses
are grounded in the exact source material, which ensures relatively better accuracy and traceability. We propose a
novel RAG-based architecture for the organization of a plug-and-play mechanism for improved transparency and
flexibility. One of the key components in our proposed Gen Al university support system (GenAI-USS) is the
capture and integration of real-time information. This is achieved via a live retrieval process embedded into the Gen
Al system, which updates the RAG database with near real-time information and can also be updated at will. This
serves as a specialized expert knowledge database for our GenAI-USS system. Our RAG mechanism pulls in rele-
vant, up-to-date information from a predetermined dynamic database, which pulls real-time data from targeted
knowledge sources.

Furthermore, our GenAI-USS design is deliberately designed to maximize process visibility of each stage of the
Gen Al process to ensure full transparency. This includes all the major phases, including the following: overview,
data collection, storage encoding, testing, chatbot interaction, and search. In addition, the testing module allows for
interactive viewing of generated responses and their sources. The GenAI-USS design is centered on testing against
relevant question datasets and answers evaluated to be accurate. The combined optimization of embedding and lan-
guage models ensures that responses remain contextually anchored to website data while enabling efficient updates
and source attribution. This approach reveals content gaps and structural barriers in the current site architecture that
may impede effective knowledge extraction. Scalability can then be achieved by optimizing the embedding and
language models for speed, cost, and energy consumption.

The rest of this article is organized as follows: we perform a literature review on topics critical to our research, with
a focus on identifying key concepts and facts on areas such as RAG, best practices on the use of tools such as Hug-
ging Face (https://huggingface.co/) and Streamlit (https://streamlit.io/), and recent advancements in LLMs and
prompt engineering. We also identify potential gaps and scope for improvement. Under “Domain and Data,” we
discuss the various aspects of how data are being used, interpreted, and leveraged for domain-specific considera-
tions and challenges. Next, we discuss the design and development of our GenAI-USS application, explaining each
stage with details about areas such as the LLMs used, embedding models, data sources, prompts, and output.
Finally, we discuss the implications of our research and GenAI-USS application, the scope for future research, and
conclude with thoughts on the way ahead for linguistic Gen Al.

2. Literature Review

We examine several key themes for our research, covering RAG, best practices on the use of tools such as Hugging
Face and Streamlit, and prompt engineering. We also cover prompt-design, zero-shot and few-shot learning, embed-
dings, chunking parameters, temperature, and associated implications. We first try to understand the kind of models
and tech stack required for our GenAI-USS application to be successful. We then explore the prompt engineering
techniques, including understanding how to design the prompts, and zero-shot and few-shot learning in prompt
engineering. Despite significant advancements, there are gaps that remain in the literature. Thus, this review pro-
vides us with a foundation for understanding and exploring concepts and usage of these tools. This will set the
stage for our current application as well as for future research. We start with RAG, because this mechanism anchors
our motivation and our framework; we then introduce Hugging Face as our resource hub for operating purposes;
this is followed by elaborations on the user interface, prompt engineering, designing prompts, and other critical
elements of our framework.

2.1. RAG

Over time, we have encountered challenges with LLMs that produce inaccurate text-based generative responses,
primarily due to the absence of precise and up-to-date datasets attached or linked to the queries referred to as
“hallucinations.” This led to the emergence of RAG. RAG uses LLM to generate responses with the help of a data-
base attached so that when a query is presented, the RAG system first identifies relevant information from external
sources and then integrates this information into the response generation process (Jiang et al. 2023). The database

104

https://huggingface.co/
https://streamlit.io/

JBDAI Vol. 3 No. 1, pp. 102-122/2025

attached will be divided with the help of a splitter because RAG works effectively with smaller text segments stored
as document snippets. These document snippets will be fed into an embedding machine to convert the text into
vector embeddings. This step helps in retrieving more factual information, reducing the occurrence of hallucina-
tions, thereby improving the quality of outputs (Gao et al. 2024; Aquino 2024).

The forward-looking active RAG uses iterative retrieval-augmented generation to anticipate future content in sen-
tences. It retrieves relevant documents and regenerates sentences that contain low-confidence tokens. This approach
enhances the efficiency of retrieving information multiple times (Jiang et al. 2023). Given its proven effectiveness,
RAG has become the most cost-effective, straightforward, and low-risk solution to achieving superior performance
for GenAl applications, which leaves many companies with little choice but to adopt it (Proser 2023). Furthermore,
recent research highlights the importance of using RAG in contexts that require high accuracy, such as university-
level textbooks, in which ChatGPT-4 was unsuccessful in delivering accurate information (Wang et al. 2024).

2.2. Hugging Face

Hugging Face stands out as a rapidly expanding hub for hosting open-source projects centered on machine learning
and Al (Hugging Face 2024) and will serve as a data store for all the LLMs that we require for GenAI-USS. This
platform’s primary focus is on transformers that streamline the process for individuals and small business startups
to develop extensive LLMs (Vasilis 2024). Hugging Face’s transformers are a groundbreaking advancement in
NLP, combining transfer learning methods with large-scale transformer language models. It offers state-of-the-art
transformer architectures, along with a collection of pre-trained models, which makes it a cornerstone in modern
NLP research and provides powerful tools for various tasks (Wolf et al. 2020).

2.3. User Interface

We use Streamlit, an open-source Python framework (Streamlit 2024), to develop our framework. Streamlit offers a
chance for individuals less experienced in developing applications to perform well by providing resources that
enhance the appearance and interactivity of projects. We are hosting and deploying our project on the Streamlit
community cloud. The deployment process involves configuring the Streamlit app for web integration, cloning our
GitHub repository, and using the platform’s infrastructure to ensure smooth integration with other machine learning
models (Imanuelyosi 2022).

2.4. Prompt Engineering

Prompt engineering optimizes and refines input queries so that the LLMs can generate more enhanced, accurate,
and coherent responses. Our focus is on using prompt engineering to ensure that we guide the users in providing
accurate inputs to achieve relevant outputs. GPT- and DALL-E-like foundation models use natural language
prompts to facilitate interaction with Al models, which have introduced us to newer tools and methods. For exam-
ple, Prompt Sapper facilitates building Al services based on prompt engineering (Cheng et al. 2024). Prompt engi-
neering has been used as an important technique for designing relevant instructions or queries to improve the
performance of the LLMs, which are used in Al, ML, and NLP tasks such as sentiment analysis, summarizing,
questions answering, and arithmetic reasoning (Shi et al. 2023). Shi et al. (2023) also emphasized the use of chain
of thought, zero-chain of thought, and in-context learning in effective prompt engineering. Furthermore, Ekin
(2023) pointed out that clarity, explicit constraints, and leveraging various types of questions are some important
factors for prompt engineering. Meanwhile, Lo (2023) emphasized conciseness, logic, explicitness, adaptability,
and reflectiveness, also known as the CLEAR framework, in dealing with the prompt engineering for Al, LLM, and
NLP models. Prompt engineering uses instruction-basis, information-basis, reformulation, and metaphoric prompt
techniques, along with effective evaluation processes for instructing LLMs to improve the performance of the
AI-NLP tasks (Rathod 2024). In addition, Ye et al. (2024) emphasized removing unwanted elements from the
prompts, thus improving capabilities of reasoning and optimizing communication between tasks to build a meta-
prompt so that we can lead the LLMs in enhancing their performance.

2.5. Designing Prompts

In designing effective prompts to interact with the AI, LLM, and NLP models, it is essential to have a comprehen-
sive understanding of what the users are looking for and the capabilities of the models. There are some key princi-
ples in prompt design that can improve the effectiveness of prompting across various models and tasks (Herrmann
and Nierhoff 2017). Herrmann and Nierhoff (2017) emphasized making the prompts optional and comprehensible
so that the users can interact with the models without any difficulties and pressure. They suggested that each

105

JBDAI Vol. 3 No. 1, pp. 102-122/2025

prompt should have a clear purpose that leads to specific actions and desired outcomes. In addition, the prompts
should be structured according to the respective user contexts and users should have control over the prompt design
so that they can achieve improved acceptance and effectiveness of prompting (Herrmann and Nierhoff 2017).

Desmond and Brachman (2024) suggested a trial-and-error process in prompt designing. This iterative testing
system allows the users to refine the prompts based on the responses from the models. Furthermore, Liu and Chilton
(2021) emphasized adding structured elements, such as subject and style, to improve the coherent outputs in genera-
tive tasks. Although these techniques and strategies are useful for creating a framework for designing prompts effec-
tively, there are some inherent complexities and challenges for the users to interact with the AI-NLP models, such
as performing consistently across diverse tasks and applications (Dang et al. 2022).

2.6. Zero-Shot and Few-Shot Learning

Zero-shot and few-shot learning are instrumental in dealing with Al models, particularly in limited labeled data
settings. These techniques allow the Al models to leverage the previous knowledge efficiently and generalize the
outputs from none to very little labeled data. If there are no direct training examples in the datasets, zero-shot learn-
ing helps Al models recognize the unrevealed classes (Deng et al. 2024). Deng et al. (2024) demonstrated the
speech-to-text alignment effectively by using Wave2Prompt, which combines spoken units with LLMs to execute
zero-shot activities. In addition, Liu et al. (2021) showed how the Micro framework improves the capacity of the
LLMs within contexts and enhances the performance of extracting zero-shot relations by using varied datasets with-
out updating parameters. However, few-shot learning can handle the Al models with limited examples. Few-shot
learning helps in cross-domain fault diagnosis by using embedding optimization and solves the challenges and
problems effectively in industrial tasks (Qiu et al. 2024). Liu et al. (2021) introduced a combined representation
learner for classifying few-shot images, which can remarkably enhance performance across diverse datasets.
Although these methods have great prospects, there are some challenges in generalizing the outputs across various
domains and tasks, which requires future research initiatives in this arena.

2.7. Context and Prompt Engineering

Contextualization is instrumental in improving the performance and effectiveness of Al, LLM, and NLP models as
well as user experience by leading the prompts to specific contexts. Jasmine (2024) pointed out that Al models and
systems can achieve improved and accurate outputs from personalized, contextualized, and relevant prompts. Muk-
tadir (2023) stated that contextualized prompts can achieve enhanced controllability and adaptability in AI-NLP
tasks by using transfer learning and attention mechanisms used for context-aware language models. In addition,
de Fonseca et al. (2023) demonstrated that the prompts that are context-aware showed improved performance, more
accuracy, and cost efficiency compared with the traditional supervised methods and techniques. Although contextu-
alization is beneficial for prompting Al, LLM, and NLP models, this requires extensive data to build effective
prompts. There is also the possibility of overfitting to a certain context, limiting the capabilities of generalizability
of the models across diverse topics.

2.8. Embeddings

Embeddings are considered the languages of LLMs and GenAl (QuantumBlack 2023). This approach uses linear
algebra to convert real-world objects into numerical representations in a high-dimensional space, which allows
machine learning and Al systems to comprehend complex knowledge. These embeddings are continuous values.
Embeddings provide a simplified representation of real-world data while preserving semantic and syntactic relation-
ships (AWS 2024). In this project, we are working with two different types of embedding models to choose from:
sentence-transformers/all-MiniLM-L6-v2 and thenlper/gte-smalls. In the future, we can add more embedding
models to work with. Here, the main purpose of using embedding models is to convert the JSON documents, which
are in the form of vector stores, for the LLM model to interpret and answer our queries in the next steps.

2.9. Chunking Parameters

Chunking is the process of breaking down large files into smaller segments for better semantic understanding.
Before embedding, our primary objective will be to provide as little noise as possible to the embedding model for it
to stay semantically relevant. “Your goal is not to chunk for chunking sake, our goal is to get our data in a format
where it can be retrieved for value later” (Mishra 2024). There are multiple chunking strategies: fixed-size chunk-
ing, recursive chunking, document-based chunking, and semantic chunking. In our project GenAI-USS, we are

106

JBDAI Vol. 3 No. 1, pp. 102-122/2025

focusing on recursive character text split, which is a method that takes up large texts and splits them into smaller
chunks based on the parameters given, including chunk size and chunk overlap.

2.10. Temperature

The “temperature” of an LLM is a key control parameter that governs the randomness of the responses generated
by the LLM (Peeperkorn et al. 2024). Usually, the default is set to 1, which represents a balanced position. When
set closer to 0, a lower level of randomness is expected, and a higher temperature significantly greater than 1 will
result in hallucinations. In our design, we choose a low temperature so that the LLM prioritizes factuality during the
response process rather than randomness. This parameter can be used to control an LLM’s entropy, and, when the
temperature is set lower, then the outputs tend to be more factual, predictable, often repetitive, and more closely and
more likely aligned with source information. In contrast, higher temperature settings spur LLMs to generate more
random, less likely aligned with source information, and relatively more unique responses. This is an important
control parameter and needs to be set to be aligned with the main objectives of a Gen Al system.

3. Conceptualization of GenAI-USS

Our current project develops and significantly improves the scope and performance of our academic bot’s capabil-
ities, leading to the creation of the Rutgers University GenAI-USS. GenAI-USS is a project developed by the
Office of University Online Education Services (UOES TLT n.d.) and the Master of Public Informatics Program at
the Bloustein School, both at Rutgers University (Rutgers University 2001). The RAG ideation for GenAI-USS pro-
ceeded from the Public Informatics NLP Studio, including the Spring 2024 and Fall 2024 classes in the Master of
Public Informatics program. GenAI-USS, also known as the “Chatbot Online Resource (COR) Navigator,” is a pro-
ject under the UOES. COR Navigator was initially designed to assist academic units across Rutgers University in
crafting and delivering hybrid and fully online courses. The platform aims to enhance effectiveness, streamline pro-
cesses, and elevate satisfaction within the Rutgers Online Learning community, which includes prospective stu-
dents, current students, faculty, and emerging online programs (UOES Rutgers 2023). The GenAI-USS project
focuses on developing an interactive question-and-answer interface, including frequently asked questions, and
enabling knowledge synthesis through a RAG module. By allowing the incorporation of a broad range of URLs,
this system enhances relative accuracy, depth of knowledge, options for expanding breadth of knowledge, and con-
textual relevance of Gen Al outputs.

GenAI-USS uses a local embedded selection approach, curating information from diverse sources such as blogs, docu-
ments, PDFs, and web pages hosted within the UOES domain, with the capability to be extended to any part of Rutgers
University. The curated dataset is integrated into a vector database and processed through an LLM by using the RAG
framework. This integration streamlines access to valuable, previously hidden information and facilitates seamless inter-
actions between faculty, students, and staff, and the GenAI-USS platform. A conceptual representation of the system
architecture is presented in Figure 1. The “Organize” section highlights semantic organization, data clarity, and redun-
dancy cleanup. The framework distinguishes between the human input, referred to as the “query,” and the adaptable
and testable prompt provided to the LLM. This adapted prompt, informed by local embeddings and the LLM’s pre-
trained knowledge, enhances output quality and relevance compared with raw queries without prompt-engineered sup-
port. Through this adaptive framework, GenAI-USS improves system transparency and flexibility, and also supports
LLM performance and accuracy, providing an innovative tool for augmenting human performance. This initiative
reflects UOES’s commitment to advancing online education at Rutgers University by integrating cutting-edge technol-
ogy and addressing the specific needs of its diverse academic community (Samuel et al. 2022).

Our primary objective is to provide a platform for faculty, students, researchers, staff, and other stakeholders
at Rutgers University to access information from the GenAI-USS. This will be achieved by implementing the
RAG-LLM application, Hugging Face, and StreamLit interface. The front-end application will resemble Figure 2,
which features a chatbot interface that is provided for asking questions and receiving answers.

3.1. Domain and Data

Similar to many other organizations, academic institutions are interested in implementing LLMs to enrich the learn-
ing experience for both faculty and students (ElementX 2024). It is clear that LLMs contain inaccurate information,
and RAG addition will solve this problem; in our case, in which academic institutions need up-to-date and accurate
information, it is ideal to implement RAG-LLM. The academic institution that we are focusing on is Rutgers Uni-
versity. It is ranked as the number 1 public university in the state of New Jersey and holds a history of more than
250 years with 67,200 undergraduate and graduate students, and more than 17,450 full-time and part-time staff

107

JBDAI Vol. 3 No. 1, pp. 102-122/2025

| Web Pages

Embedding
Model

Data
Collection

5
Vector
DB

f o
o
T
w

Embeddings

Word Organize
Documents

Markdown

il

LLM
Knowledge

Embedding
Model

User Query Embeddings Context

Prompt + Query
+ Context

Response

Figure 1: Generative artificial intelligence (AI) university support system (GenAI-USS) architecture.

Step 1: Select or Upload Vector Store

Choose Vector Store Option

® Select Existing
Upload Custom

Select a Vector Store

auto_save_20240915_173228.zip

Load Vector Store

Step 2: Select and Initialize LLM

Select LLM Model

microsoft/Phi-3-mini-4k-instruct

Initialize LLM

Step 3: Configure Prompt Template

Custom Prompt Template
Answer the following question based on the provided context:

Context: {context}

SetPrompt Template

Chat with the RAG Chatbot

Figure 2: Screenshot of chatbot retrieval augmented generation (RAG).

108

JBDAI Vol. 3 No. 1, pp. 102-122/2025

(Rutgers 2020). A university of this scale has an extensive number of resources for students and faculty that act as
silos of information and resources. Faculty and students do not have guidance on how to navigate through these
resources, even with capable search engines to index that material. To fulfill this purpose for students and faculty at
Rutgers University, we will implement RAG. The first step in the process will be with Rutgers Online Degree Pro-
grams (https://www.rutgers.edu/academics/online-degree-programs) as our primary website source. Our final goal
is to access academic information through application programming interfaces (APIs), databases, document reposi-
tories, websites, or PDFs but we are currently concentrating on accessing information in the form of website URLSs.
The source data from Rutgers Online Degree Programs | Rutgers University will be used as input to the retriever
component of RAG. This component will retrieve the relevant information by using the user’s query. Next, a prompt
is generated based on the retrieved information and user query, which will serve as an input to the LLM, in turn, gen-
erating an answer. The final step would include the LLM parsing the generated answer and presenting it to the user
in a clear and understandable format. For the purpose of maintaining high-quality prompts, we also developed a reas-
onably comprehensive question bank for all reasonable questions to train the model. Our primary question bank of
most anticipated questions that students and faculty would pose consists of 100 questions from prospective students’
perspectives and 50 questions from faculty’s perspective, based on information available on the webpages.

3.2. GenAI-USS Prompt and Prompt Control

The RAG pattern contains four key configurable points that influence its performance. We use sensible defaults for
prompts and configurations for quick interactive testing, which allows users to quickly evaluate the tool’s perfor-
mance with minimal customization. This approach enables rapid iteration and general feedback collection. Our pro-
cess extends the interactive testing by supporting comprehensive validation approaches. Users can test custom
prompts for specific scenarios, whereas the advanced features enable bulk testing of multiple prompts. By following
our specified data format, entire collections of prompts can be systematically evaluated against test question sets,
enabling thorough performance analysis.

3.3. GenAI-USS Application

A Streamlit-based user interface will be used to facilitate the mining, processing, and embedding of the data from
the Rutgers Online Degree Programs | Rutgers University. The GenAI-USS system is organized into multiple
pages, each dedicated to a specific part of data processing workflows. This user interface will guide users through
each step of the process, ensuring a seamless and intuitive user experience. After launching the app, users can navi-
gate between different pages by using the sidebar. Each page includes interactive elements, such as input fields,
dropdown menus, and checkboxes, which allow users to customize each step of the data processing pipeline.

First Page: The first page of the chatbot application (Figure 3) serves as a dashboard that serves as an overview of
the chatbot’s current settings and provides an opportunity to configure the system’s performance, select different
language models, and initiate queries.

General Settings Panel: The first section of the page provides current settings for running the chatbot. This
includes multiple settings related to how the chatbot environment is configured and is being executed. These set-
tings include the following:

¢ Running on Streamlit Cloud: This option checks whether the application is being hosted on Streamlit Cloud.
The value displayed will either be true or false, depending on whether the cloud hosting is active or not.

e Number of CPUs: This option helps understand the number of available CPU cores allocated to the chatbot.

o Using Multiprocessing Session State: This option checks whether the application is leveraging multiproc-
essing to enhance the performance of the state. If true, then multiprocessing is enabled to handle tasks con-
currently and can improve performance and process time.

e TOKENIZERS_PARALLELISM: This option, if set to “True,” can boost the efficiency of text processing
by parallelizing the tokenization of input text across multiple threads.

Vector Store Backup Datasets: This section of the page enables the user to choose any dataset from multiple
vector store backup datasets. These vector stores serve as repositories of pre-processed text data, stored in vector
format. This step ensures that the user does not perform similar vector data extraction and can directly proceed to
perform queries on currently available data backups.

Selecting the LLM: The LLM defines how the chatbot processes language, generates responses, and interprets user
queries. This page preselects three models to compare, chosen to represent different trade-offs in performance

109

https://www.rutgers.edu/academics/online-degree-programs

JBDAI Vol. 3 No. 1, pp. 102-122/2025

RAG Chatbot

Running on Streamlit Cloud: False
Number of CPUs: 12
Using multiprocessing (session state): True

TOKENIZERS_PARALLELISM: true

Vector Store Selection
Select Vector Store Backup

auto_save_20240915_173228.2ip
Load Selected Backup

LLM Selection

Select LLM Model

microsoft/Phi-3-mini-4k-instruct

LLM microsoft/Phi-3-mini-dk-instruct initialized!

Chat

Figure 3: Screenshot of the application.

characteristics. Each model offers distinct advantages in terms of cost, computational requirements, parameters,
response relevancy, and context window size. For example, Mistral-7B-Instruct provides a balance of efficient
computing and good response quality, whereas GPT-3.5-turbo offers stronger performance at a higher cost (Glover
2024). Phi-3.5-mini-instruct demonstrates capabilities with lower resource requirements. For example:

e Mistral-7B-Instruct (7B parameters, 32K context window): Provides efficient computing and good
response quality, suitable for self-hosted deployment

e GPT-3.5-turbo (175B parameters, 16K context window): Offers stronger performance through API access,
with higher associated costs

e Phi-3.5-mini-instruct (3.8B parameters, 2K context window): Demonstrates capable performance with
lower resource requirements, ideal for lighter workloads

This step makes sure the model is being tailored to different use cases, in which we can choose the context window,
number of parameters, and file size. This includes determining whether local LLM access versus remote-hosted API
access is appropriate. This step allows for the testing of LLM configuration impact on the question and answer
(QA) performance and accuracy.

Chat Section: Users can interact directly with the chatbot by entering their queries. It consists of an Input Field, a
Submit Button, and an Output Display. We can input the query and click the submit button to generate the output
that is based on the LLM selected and the underlying vector store dataset, ensuring relevance and accuracy.

Second Page: This page (Figure 4) provides the project overview and serves as an index page, providing users with
brief information about the steps and contents available in the application.

The step-by-step process is to work on the following:
e Data Collection
e Data Organization
¢ Encoding Vector Storage
e Testing and QA
¢ Chatbot Implementation

110

JBDAI Vol. 3 No. 1, pp. 102-122/2025

app

project overview RAG Chatbot Development Project

data collection

Welcome to the RAG Chatbot Development Project. This application guides you through the process of
creating a Retrieval-Augmented Generation (RAG) chatbot, from data collection to the final
encoding storage implementation.

data organization

testing qa

chatbot rag P rOjeCt WO rkﬂOW

chatbot search

VETES Step-by-step Process

) 1. Data Collection
Project Status

Gather and scan relevant URLs for your knowledge base.
Data Collection:

Data Organization: 2. Data Organization

Figure 4: Screenshot of the project overview.

With each step, we will be provided with updates with regard to whether the data are defined or documents are
fetched. This page is built mainly with the help of the streamlit switch_page() function, which directs to multiple
pages created in the application. This page gives an overview of the key concepts, steps to get started, prerequisites,
and expected outcomes. This page mainly serves the purpose of setting expectations. Users can proceed to the next
page by clicking on the “Start with Data Collection” button.

Third Page: This page (Figure 5) provides information on data collection. The core functionality of this page
revolves around scanning the URLs to extract information, organizing it into tabular format, and preparing it for fur-
ther processing.

app

prjectoverview Data Source Configuration and

data collection
encoding storage Docu ment Processing

testing ga

Scan Websites for URLs

Enter URLs to scan, separated by nevs lines:

chatbot rag

View more

https:ffgrid.rutgers.edu

Project Status

Data Collection:

Scan and Fetch URLs
Data Organization:
Embedding Madel: Fetch Documents
Vector Store:

Process Collection
Retriever:

Save Collection
LLM:

Prompt Template: Proceed to Encoding Storage

Figure 5: Screenshot of data collection.

111

JBDAI Vol. 3 No. 1, pp. 102-122/2025

URL Input Section: This section on the page allows the users to input the URLs that will act as the source data.
The users can enter multiple URLSs to scan, separated by new lines. The information is extracted from these URLSs
and displayed in tabular form. These tables will include columns that detail the following:

e URL link

e Type of URL: this column specifies whether it is an internal or external URL. Internal URLs refer to web
pages within the same website, whereas external URLs are links to web pages outside the main website but
accessible through it.

e Page name
e Scanned date and time

This step ensures that we gain access to every page related to the given website.

Document Processing and Cleanup: After extracting all the URLs associated with the main source URL, users
can proceed to fetch, clean, and organize documents. Here, users can have the option to delete the unnecessary
URLs before initiating the document retrieval process by using the “Fetch” button. The documents will be fetched
in the form of a JSON file, which the users can save and download for later use, as shown in Figure 6. This page is
crucial in ensuring that all the relevant data sources are accurately captured and pre-processed before advancing to
the next steps. By giving the users control over the URL input and cleaning process, it is ensured that the system is
robust and adaptable to various use cases.

Fourth Page: This page (Figure 7) provides information on the encoding storage. This step is critical for processing
and storing the extracted information for further processing, particularly in tasks such as question-answering and
conversational search. The number of documents that are fetched from the session state will be available. Before
proceeding to the encoding step, users are given the option to upload a JSON file. This will provide an opportunity
for users to work with a previously saved dataset or any new data in JSON format that needs to be processed. After
this, users will be able to choose the embedding model for processing. “Embeddings” refer to vectors that encapsu-
late the connections and significance among words, thereby representing semantic relationships (Bhavsar 2024).
These embeddings will serve as a foundation for question-answering, conversational search, and other functions.
The embedding model has three different options from which to choose. These embedding model options are
selected to represent different trade-offs in computational requirements and embedding quality as follows:

¢ sentence-transformers/all-MiniLM-L6-v2 (384 dimensions, 6 layers): Balances performance and effi-
ciency, producing high-quality embeddings while maintaining reasonable computational costs. This model
excels at semantic similarity tasks and shows strong performance in production environments.

o thenlper/gte-small (384 dimensions, 4 layers): Optimized for scenarios with limited computational resour-
ces, offering faster inference times while maintaining acceptable embedding quality. Its reduced architecture
makes it suitable for environments in which processing speed is prioritized over maximum accuracy.

e Other: The framework supports the integration of custom embedding models, which allows teams to imple-
ment specialized models for specific use cases. This flexibility enables the testing of newer models or
domain-specific variants as they become available.

More flexibility: After selecting an embedding model, users configure two critical parameters, chunk size and
chunk overlap, which together determine how documents are segmented for embedding. These parameters are
essential for maintaining semantic coherence and ensuring accurate retrieval of relevant information from the vector
store.

e Chunk Size: The maximum number of characters each chunk can hold

Save Collection

Proceed to Encoding Storage

Figure 6: Save data collection.

112

JBDAI Vol. 3 No. 1, pp. 102-122/2025

RUNNING Stop Deploy

Select Embedding Model

app

sentence-transformers/all-MiniLM-L6-v2
project overview
datalcollection Selected Embedding Model: sentence-transformers/all-MiniLM-L6-v2

data organization

Customize Chunking Parameters

encoding storage

Chunk Size
testing qa
chatbot rag 100

chatbot search Chunk Overlap

Creating vector store...

Figure 7: Screenshot of encoding storage.

e Chunk Overlap: The number of characters that should be shared between two consecutive chunks (Peter
2023)

We then proceed to “Create Vector Store,” which gives us a progress update, along with in-detail information about
the total number of documents processed, total chunks, average chunk length, splitting time, encoding time, and
total processing time. Once the vector store creation is complete, we can download the vector store, which can be
stored or used in the next stage: testing and QA.

The encoding and storage step is crucial because it transforms unstructured data into structured vector representa-
tions that can be effectively used in downstream tasks such as semantic search, conversational Al, and question-
answering systems. The key statistics to measure the size and performance of creating the vector store from our col-
lection are shown in Figure 8.

app
project overview
data collection

encoding storage

. Creating vector store...
testing ga

chatbot rag Vector store saved as auto_save_20240915_173228.zip

chatbot search

Total Documents Total Chunks Avg. Chunk Length

47 7033 782 chars

Splitting Time Encoding Time Total Processing Time

7.58 seconds 183.50 seco... 1.09 seco...

Vector store creation complete!

Download Vector Store

Figure 8: Screenshot of encoding process.

113

JBDAI Vol. 3 No. 1, pp. 102-122/2025

Fifth Page: This page is dedicated to testing the model and QA. We now have a list of vector store documents
saved from the previous step, as shown in Figure 9. We can select the vector store backup from the list of backups
and then proceed to load it. We also have an option to unload the current one to be sure of the ones we are trying to

select.
In Figure 10, the LLM Configuration Step is shown, which involves the following:

e Selecting the LLM will have three different options to choose from:
1. “mistralai/Mistral-7B-Instruct-v0.2”
2. “Phi-3.5-mini-instruct,” “gpt-3.5-turbo”
3. “Other”

app

Testing and QA

data collection

encoding storage

1. Vector Store Management

Current Vector Store: None

testing qa

chatbot rag

chatbot search Unload ClimentVectorStore Select Vector Store Backup

auto_save_20240915_173228.zip

Project Status Load Selected Backup

Data Collection:
Data Organization 2. LLM Configuration

Embedding Model: ¥ Select LLM Model

Vector Store: ¥ microsoft/Phi-3-mini-4k-instruct

Retriever: ¥
RepoID

LLM:
microsoft/Phi-3-mini-4k-instruct

Prompt Template: ¥
Max New Tokens

Please complete all setup steps. 250

Session State Details

Figure 9: Screenshot of testing question and answer (QA).

Deploy

2. LLM Configuration

Select LLM Model

app

project overview
data collection microsoft/Phi-3-mini-4k-instruct
encoding storage

testing qa Reeol)

chatbot rag microsoft/Phi-3-mini-4k-instruct
chatbot search Max New Tokens

250

Project Status
Data Collection:

Data Organization:

Embedding Model: ¥ 0.95

Vector Store: ¥ Typical P

Retriever: ¥ 0.95

LLM: Temperature

Prompt Template: ¥ 001

Repetition Penalty
Please complete all setup steps.
1.03

Session State Details Update LLM Settings

Figure 10: Screenshot of configuration details.

114

JBDAI Vol. 3 No. 1, pp. 102-122/2025

e Model Configuration Parameters: This includes the following:

6.
7.

M N

Repo ID

Max New Tokens - the maximum number of tokens the model should generate in the response
Top K - the top “k” number of responses

Top P - smallest set of tokens whose cumulative probability is greater than p

Typical P - a variation of top p in which the model aims to select those tokens whose probability is closest
to the expected

Temperature - randomness
Repetition Penalty - this parameter throws a penalty at the model for generating the same token multiple times.

Once these values are configured, we can update the prompt template to proceed to “Ask Questions” (Figure 11).
This is a crucial step for ensuring the LLM’s output is structured and maintained. The user can fine-tune the

Q_num Questions persona

1 What types of online degrees does Rutgers University offer? Prospective St

2 Can you list some of the undergraduate programs available online at Rutgers Univers Prospective St
What are the options for online master's degrees at Rutgers University? Prospective St
Are there any doctoral programs offered online by Rutgers University? Prospective St
What benefits does Rutgers University highlight about its online degree programs? Prospective St
How does Rutgers University ensure the flexibility of its online programs? Prospective St
What career growth opportunities does Rutgers promise to online students? Prospective St
In which fields can students earn a Master of Science through Rutgers' online progran Prospective St
What is the geographic advantage mentioned by Rutgers for its online learners? Prospective St
How does Rutgers University support the academic needs of its online students? Prospective St

Maximum number of questions to process (0 for all)

LLM: <class 'langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint'>
Retriever: <class 'langchain_core.vectorstores.base VectorStoreRetriever'>

Improved prompt: input_variables=['context', 'question'] input_types={} partial_variables={} messages=
[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'],
input_types={}, partial_variables={}, template="\n You are a question-answering assistant. Use ONLY the
following context to answer the question. If the context doesn't contain enough information to answer the
question, simply state "l don't have enough information to answer this question." Do not apologize or
mention the lack of context. Keep your answer concise and directly related to the question.\n\n Context:

{context}\n\n Question: {question}\n\n Answer:'), additional_kwargs={})]

Processing question 2/10: Can you list some of the undergraduate programs av...

Figure 11: Screenshot of questioning the chatbot.

115

JBDAI Vol. 3 No. 1, pp. 102-122/2025

template based on the requirements. The next step is to enter the question and proceed to check the responses. An
optional step is to pursue “Batch Processing” (Figure 12), a process that enables a computer to efficiently manage
and process large volumes of data simultaneously (Runalloy 2024). In this step, we upload the Questions CSV file
and, optionally, the Prompts CSV file, and proceed to process all the batch questions. This step will ensure that we
have high-speed processing and highly efficient workflows with high accuracy and minimal error.

Sixth Page: This page provides information on the RAG-based chatbot interaction and can be accessed via the
options (Figure 13). The final page is the chatbot interface, in which we will be conducting long-form testing of the
RAG chatbot, allowing for context-aware conversations by storing the history of conversations. This interface will
perform similar operations to that of the Testing QA page, except the Testing QA page is more like a question-
answer interface, whereas the main purpose of the chatbot RAG page is for testing longer conversations.

Maximum number of questions to process (0 for all)

LLM: <class 'langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint'>
Retriever: <class 'langchain_core.vectorstores.base VectorStoreRetriever'>

Improved prompt: input_variables=['context', 'question'] input_types={} partial_variables={} messages=
[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context’, 'question'],
input_types={}, partial_variables={}, template='\n You are a question-answering assistant. Use ONLY the

following context to answer the question. If the context doesn't contain enough information to answer the

question, simply state "l don't have enough information to answer this question." Do not apologize or
mention the lack of context. Keep your answer concise and directly related to the question.\n\n Context:

{context}\n\n Question: {question}\n\n Answer:'), additional_kwargs={})]

Batch processing completed!

Batch Processing Results:

question answer

What types of online degrees does Rutgers University offer? Rutgers University offers
Can you list some of the undergraduate programs available online at Rutgers Univers |don't have enough info
What are the options for online master's degrees at Rutgers University? Rutgers University offers
Are there any doctoral programs offered online by Rutgers University? Yes, Rutgers University o
What benefits does Rutgers University highlight about its online degree programs? The benefits that Rutger.
How does Rutgers University ensure the flexibility of its online programs? Rutgers University ensur
What career growth opportunities does Rutgers promise to online students? Enhance your career pro
In which fields can students earn a Master of Science through Rutgers' online progran Students can earn a Mas
What is the geographic advantage mentioned by Rutgers for its online learners? The geographic advanta;

How does Rutgers University support the academic needs of its online students? At Rutgers, online studer

Download Results as CSV

Successfully processed: 10

Figure 12: Screenshot of batch processing workflow.

116

JBDAI Vol. 3 No. 1, pp. 102-122/2025

Improved RAG Chatbot

Step 1: Select or Upload Vector Store

auto_save_20240915_173228.2ip

Load Vector Store

Step 2: Select and Initialize LLM

Select LLM Model

microsoft/Phi-3-mini-4k-instruct

Initialize LLM
Step 3: Configure Prompt Template
Custom Prompt Template.

Answer the following question based on the provided context:

Context: {context}

Set Prompt Template

Chat with the RAG Chatbot

() veltmes things abouthissite

a 1. Thesite s associated with the Division of Continuing Studies at Rutgers University,
specifically the Rutgers Lifelong Learning Center located at 3 Rutgers Plaza, New Brunswick,
M osoo

Figure 13: Screenshot of chatbot retrieval augmented generation (RAG).

e Step 1: “Select Existing”—vector stores populated with data or “Upload Custom”—upload your own dataset
or vector store.

e Step 2: Select and initialize the LLM
o Step 3: Configure the prompt template

e Step 4: Chat with the RAG chatbot—this chatbot will retrieve relevant information from the vector store
based on the user’s input.

The chatbot search will not only give a detailed answer to the question but will also give information about the
Input and JSON data related to it. This step-by-step process provides a more structured way to configure and evalu-
ate the RAG chatbot, ensuring that it performs well in more complex and long-term conversational scenarios. An
example of the output is provided in Figure 14.

3.4. Discussion—Strengths and Weaknesses

Gen Al-based applications have gained prominence in recent years, and there have been numerous calls for address-
ing the risks associated with Gen Als (Golda et al. 2024; Samuel 2021). The GenAI-USS system is no exception to
the systemic challenges faced by generative applications, hence, we focus our discussion here on application-
specific strengths and weaknesses. The strengths include better transparency, valuable flexibility, and choices for
users, along with improved accuracy of responses, the use of a plug-and-play architecture, integration of real-time
information, information processing visibility, hallucination mitigation, and higher overall quality of Al-generated
output. The known uncertainties and weaknesses are based on the fact that this is a prototype system and is yet to
be subject to open use by students, staff, faculty, and other university stakeholders. These include a lack of clarity
on the comprehensiveness of the GenAI-USS system, the potential for hallucination, the potential inability to
follow prompts that lead to accurate information stated in a wrong style or tone, the potential for misuse, and the
risks associated with the information contained in the LLM that the application is built on. One way to address
some of these weaknesses is to run more automated and bulk processing for chat testing, with human validation on
a broad range of possible input queries. It must be noted that the architecture supports the testing of new collections
and related materials. Key advantages of our design are transparency, testing capabilities, and options for the use of

117

JBDAI Vol. 3 No. 1, pp. 102-122/2025

Chat with the RAG Chatbot

Tell me 3 things about this site

1. Thesite is associated with the Division of Continuing Studies at Rutgers University,
specifically the Rutgers Lifelong Learning Center located at 3 Rutgers Plaza, New Brunswick,
NJ 08901.

. Thesite offers a variety of lifelong learning activities and events that cater to the needs and
interests of its visitors.

. Thesite's content is managed and delivered through a combination of technologies,
including Drupal 7, CometCustomKeyCommands, CometRelayConfig, and
WebConnectionClassServerGuess, among others.

Input:

Parse the following JSON data to identify the following information: 1) The name of the company,
2) The type of service they offer, 3) The technology stack they use, 4) The geographical location of
their headquarters, 5) The specific event or product they are promoting, 6) The date of the event
or product launch, 7) The target audience for the event or product, 8) The main features of the
event or product, 9) The pricing model, 10) The company's mission statement, and 11) Any
partnerships or collaborations mentioned. Ensure that the data is presented in a structured

format, such as a table, with each piece of information in its own column.
JSON Data:

[{"id":1,"name":"TechGenius","service":"Software Development","technologyStack":"Python,
React, Node.js","headquarters":"San Francisco, CA","event":"CodeCon 2022","eventDate":"2022-
09-15","targetAudience":"Developers","feature: ollaborative coding environment, real-time
feedback, cloud-based tools","pricing":"Subscription-based","missionStatement":"To empower
developers with cutting-edge tools and a community for growth","partnerships":"Microsoft,
GitHub","description":"TechGenius is a leading software development company that specializes
in providing innovative tools and services to developers. Their mission is to empower developers
with cutting-edge tools and a community for growth. They are excited to announce the launch of
CodeCon 2022, a collaborative coding event that will take place on September 15, 2022

o

L

Clear Chat History

Figure 14: Screenshot of retrieval augmented generation (RAG) chatbot response.

open-weight LLMs. This implies that we can extensively test via QA source material for topical completeness, run
tests on prompts to see if they guide the LLM to improved answers, test and compare LLMs for performance and
quality, test and compare combinations of embedding models and LLMs, and ability to change basic embedding
model properties and check with QA performance and relevancy changes. Other strengths include standard RAG
benefits, including the ability of the system to pull somewhat relevant information from the LLM or be designed to
have the option to say that it does not have a satisfactory answer to the query if the RAG database does have the
necessary information to respond to the query. Furthermore, the testing mechanism allows us to assess if the dataset
or the vector would have the information necessary for a conversation.

118

JBDAI Vol. 3 No. 1, pp. 102-122/2025

4. Future Research

Our current focus is on accessing information through website URLSs. In the future, we plan to expand our scope by
including various forms of text-based media, image-based media, audio-based media, and video-based media. Each
media type serves a different purpose, and it can be chosen based on the user’s preference. Future research also
needs to address LLM quality evaluation and task appropriateness. Such evaluation needs to include improved mea-
sures for the accuracy of responses, coherence, consistency, and linguistic fluency. Specifically, we intend to articu-
late measures to indicate whether the vector embeddings capture semantic similarities, whether a correct chunking
strategy has been chosen, and evaluate whether the prompts generate meaningful outputs across different contexts.
Such measures can guide future research by providing ways to assess the LLM’s performance in both technical and
output evaluation dimensions. This work establishes a framework for scalable, cost-effective Al deployment in aca-
demic settings through optimized model selection and performance benchmarking. The system in future work will
enable the generation of comprehensive testing datasets through LLM-generated synthetic QA data, expanding our
evaluation capabilities. In addition, apart from quality improvement and development evaluation measures, future
research needs to address incorporating new features into the user dashboard, such as sentiment scores on likely
public perception, novel information classification mechanisms, and popularity of generated content (Rahman et al.
2021; Ali et al. 2021; Samuel 2018; Garvey et al. 2021). Finally, it would be valuable for future iterations of the
vector store to be tested and verified for customized RAG chatbots. Validated vector stores are the source of knowl-
edge for RAG-aware chatbots. It is anticipated that future research will lead to increased personalization and adap-
tivity to individual users, groups, and organizations.

5. Conclusion

Our design strategy for GenAI-USS facilitates an excellent approach to enhanced transparency and user-friendly
flexibility of options, along with notable improvements to the Al-generated output via targeted information
retrieval, hallucination mitigation, accuracy improvement, and timely data updates. On the submission of a query,
our RAG-dependent system first identifies the most relevant information from the specialized expert knowledge
database and then factors this into the Gen Al response development process with very high levels of transparency
and a segment for testing, all of which cumulatively leads to vastly improved levels of effectiveness and user satis-
faction. Our tests with the beta version produced highly positive results on qualitative human evaluation of gener-
ated output. Given the rapid rate of change in the field of Al and NLP technologies, we anticipate major updates to
LLM and RAG models and architectures. The modular and open-weight (or open source) LLM-based approach we
have used is expected to enable us to adapt to the presently foreseeable arena of upcoming technological changes
and advancements. Thus GenAI-USS has the potential to serve as a transparent and flexible RAG system with
scope for additional improvements of Al-generated output. As emphasized by Samuel et al. 2024, We hope that
GenAI-USS will be a part of the wave of Als that usher in the broadly anticipated “new era of artificial
intelligence,” leading to a better quality of life for all.

References

Alan, A. Y., E. Karaarslan, and O. Aydin. 2024. “A RAG-Based Question Answering System Proposal for Understanding Islam:
MufassirQAS LLM.” Preprint, submitted March 2025. https://doi.org/10.48550/arXiv.2401.15378

Ali, G. M. N., M. M. Rahman, M. A. Hossain, M. S. Rahman, K. C. Paul, J. C. Thill, et al. 2021. “Public Perceptions of
COVID-19 Vaccines: Policy Implications from US Spatiotemporal Sentiment Analytics.” Healthcare 9, no. 9: 110 MDPL

Anderson, R., C. Scala, J. Samuel, V. Kumar, and P. Jain. 2024. “Are Emotions Conveyed Across Machine Translations? Estab-
lishing an Analytical Process for the Effectiveness of Multilingual Sentiment Analysis with Italian Text.” Journal of Big
Data and Artificial Intelligence, 2, no. 1: 57-73. doi: 10.54116/jbdai.v2i1.30

Aquino, S. 2024. “What is RAG: Understanding Retrieval-Augmented Generation.” Qdrant. Accessed November 12, 2024.
https://qdrant.tech/articles/what-is-rag-in-ai/

AWS. 2024. “Start Building on AWS Today.” Cloud and Platform Services. Accessed November 12, 2024. https://
aws.amazon.com/

Bhavsar, P. 2024. “Mastering RAG: How to Select an Embedding Model.” Galileo. Accessed May 6, 2024. https://www.rungali-
leo.io/blog/mastering-rag-how-to-select-an-embedding-model#:~:text=Embeddings%20refer%20t0%20dense%2C%20continuous

Cheng, Y., J. Chen, Q. Huang, Z. Xing, X. Xu, and Q. Lu. 2024. “Prompt Sapper: A LLM-Empowered Production Tool for
Building Al Chains.” ACM Transactions on Software Engineering and Methodology 33, no. 5: 1-24. doi: 10.1145/3638247

119

https://doi.org/10.48550/arXiv.2401.15378
https://doi.org/10.54116/jbdai.v2i1.30
https://qdrant.tech/articles/what-is-rag-in-ai/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.rungalileo.io/blog/mastering-rag-how-to-select-an-embedding-model#:~:text=Embeddings%20refer%20to%20dense%2C%20continuous
https://www.rungalileo.io/blog/mastering-rag-how-to-select-an-embedding-model#:~:text=Embeddings%20refer%20to%20dense%2C%20continuous
https://www.rungalileo.io/blog/mastering-rag-how-to-select-an-embedding-model#:~:text=Embeddings%20refer%20to%20dense%2C%20continuous
https://doi.org/10.1145/3638247

JBDAI Vol. 3 No. 1, pp. 102-122/2025

CloudFare. 2024. “Connect, Protect, and Build Everywhere.” Cloud and Cybersecurity Services. Accessed November 12, 2024.
https://www.cloudflare.com/

Dang, H., L. Mecke, F. Lehmann, S. Goller, and D. Buschek. 2022. “How to prompt? Opportunities and Challenges of Zero-
and Few-Shot Learning for Human-AlI Interaction in Creative Applications of Generative Models.” Preprint, submitted Sep-
tember 3. https://doi.org/10.48550/arxiv.2209.01390

Das, S. 2024. “Exploring the Role of Large Language Models in Education. ELearning Industry.” Accessed November 12,
2024. https://elearningindustry.com/exploring-the-role-of-large-language-models-in-education

de Fonseca, F. P. C., I. Paraboni, and L. A. Digiampietri. 2023. “Contextual Stance Classification Using Prompt Engineering.”
Proceedings of the 14th Brazilian Symposium in Information and Human Language Technology, Belo Horizonte, Brazil,
SBC, September 25-29. https://doi.org/10.5753/stil.2023.233708

Deng, K., G. Sun, and P. C. Woodland, 2024. “Wav2Prompt: End-to-End Speech Prompt Generation and Tuning for LLM in
Zero and Few-shot Learning” Preprint, submitted June 1. https://doi.org/10.48550/arxiv.2406.00522

Desmond, M., and M. Brachman. 2024. “Exploring Prompt Engineering Practices in the Enterprise.” Preprint, submitted
March 13. https://doi.org/10.48550/arxiv.2403.08950

Duan, J., H. Cheng, S. Wang, A. Zavalny, C. Wang, R. Xu, et al. 2023. “Shifting Attention to Relevance: Towards the Predictive
Uncertainty Quantification of Free-Form Large Language Models.” Preprint, submitted May 2024. https://doi.org/10.48550/
arXiv.2307.01379

Ekin, S. 2023. “Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And Best Practices.” Accessed June
20, 2023. 681648.pdf (d197for5662m48.cloudfront.net)

ElementX. 2024. “Enhancing Education with RAG: How Universities Can Benefit.” Accessed November 12, 2024. https://
www.elementx.ai/post/enhancing-education-with-rag

Gao, Y., Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, et al. 2024. “Retrieval-Augmented Generation for Large Language Models: A
Survey.” Accessed April 28, 2024. https://arxiv.org/pdf/2312.10997

Garvey, M. D., J. Samuel, and A. Pelaez. 2021. “Would You Please like my Tweet?! An Artificially Intelligent, Generative Prob-
abilistic, and Econometric Based System Design for Popularity-Driven Tweet Content Generation.” Decision Support Sys-
tems 144: 113497. doi: 10.1016/j.dss.2021.113497

Glover, E. 2024. “Mistral AI: What to Know About Europe’s OpenAl Rival.” Built In. Accessed November 12, 2024. https://
builtin.com/articles/mistral-ai

Golda, A., K. Mekonen, A. Pandey, A. Singh, V. Hassija, V. Chamola, et al. 2024. Privacy and Security Concerns in Generative
Al: A Comprehensive Survey. IEEE Access.

Google DeepMind. 2024. “Google DeepMind.” Accessed November 12, 2024. https://deepmind.google/

Herrmann, T., and J. Nierhoff. 2017. “Prompting—A Feature of General Relevance in HCI-Supported Task Workflows.” Pro-
ceedings of the 19th International Conference, HCI International 2017, Vancouver, BC, Canada, Springer, Cham, July 9-14.
https://doi.org/10.1007/978-3-319-58750-9_17

Hugging Face. 2024. “Hugging Face—On a Mission to Solve NLP, One Commit at a Time.” Accessed April 29, 2024. https://
huggingface.co/

IBM. 2023. “What Are Large Language Models (LLMs)?” Accessed April 29, 2024. https://www.ibm.com/topics/large-lan-
guage-models

Imanuelyosi. 2022. “Deploy Your Streamlit Web App Using Hugging Face.” Accessed April 29, 2024. https://medium.com/
(@imanuelyosi/deploy-your-streamlit-web-app-using-hugging-face-7b9cddb11148

Jasmine, K. S. 2024. “Unlocking the Power of Prompt Engineering: Diverse Applications and Case Studies.” In Transforming
Education With Generative Al: Prompt Engineering and Synthetic Content Creation, edited by Ramesh C. Sharma and Aras
Bozkurt, 411-432. Hershey, PA: IGI Global. doi: 10.4018/979-8-3693-1351-0.ch020

Jiang, Z., F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, et al. 2023. “Active Retrieval Augmented Generation.” Preprint, sub-
mitted Oct 23. https://doi.org/10.48550/arXiv.2305.06983

Li, J., X. Cheng, W. X. Zhao, J.-Y. Nie, and J.-R. Wen. 2023. “HaluEval: A Large-Scale Hallucination Evaluation Benchmark
for Large Language Models.” arXiv.org, doi: 10.48550/arXiv.2305.11747

Liu, V., and L. B. Chilton. 2021. “Design Guidelines for Prompt Engineering Text-to-Image Generative Models.” Preprint, sub-
mitted September 2023. https://doi.org/10.48550/arxiv.2109.06977

Lo, L. S. 2023. “The CLEAR Path: A Framework for Enhancing Information Literacy Through Prompt Engineering.” The Jour-
nal of Academic Librarianship 49, no. 4: 102720. doi: 10.1016/j.acalib.2023.102720

Mishra, A. 2024. “Five Levels of Chunking Strategies in RAG| Notes from Greg’s Video. Medium.” Accessed November 12, 2024.
https://medium. com/@anuragmishra_27746/five-levels-of-chunking-strategies-in-rag-notes-from-gregs-video-7b735895694d

120

https://www.cloudflare.com/
https://doi.org/10.48550/arxiv.2209.01390
https://elearningindustry.com/exploring-the-role-of-large-language-models-in-education
https://doi.org/10.5753/stil.2023.233708
https://doi.org/10.48550/arxiv.2406.00522
https://doi.org/10.48550/arxiv.2403.08950
https://doi.org/10.48550/arXiv.2307.01379
https://doi.org/10.48550/arXiv.2307.01379
https://www.elementx.ai/post/enhancing-education-with-rag
https://www.elementx.ai/post/enhancing-education-with-rag
https://arxiv.org/pdf/2312.10997
https://doi.org/10.1016/j.dss.2021.113497
https://builtin.com/articles/mistral-ai
https://builtin.com/articles/mistral-ai
https://deepmind.google/
https://doi.org/10.1007/978-3-319-58750-9_17
https://huggingface.co/
https://huggingface.co/
https://www.ibm.com/topics/large-language-models
https://www.ibm.com/topics/large-language-models
https://medium.com//deploy-your-streamlit-web-app-using-hugging-face-7b9cddb11148
https://medium.com//deploy-your-streamlit-web-app-using-hugging-face-7b9cddb11148
https://doi.org/10.4018/979-8-3693-1351-0.ch020
https://doi.org/10.48550/arXiv.2305.06983
https://doi.org/10.48550/arXiv.2305.11747
https://doi.org/10.48550/arxiv.2109.06977
https://doi.org/10.1016/j.acalib.2023.102720
https://medium.com//five-levels-of-chunking-strategies-in-rag-notes-from-gregs-video-7b735895694d

JBDAI Vol. 3 No. 1, pp. 102-122/2025

Muktadir, G. M. 2023. “A Brief History of Prompt: Leveraging Language Models. (Through Advanced Prompting).” Preprint,
submitted November 28. https://doi.org/10.48550/arxiv.2310.04438

OpenAl 2024. “OpenAlL” Accessed November 13, 2024. https://openai.com/

Peeperkorn, M., T. Kouwenhoven, D. Brown, and A. Jordanous. 2024. “Is Temperature the Creativity Parameter of Large Lan-
guage Models.” Preprint, submitted May 1. https://doi.org/10.48550/arXiv.2405.00492

Peter, A. 2023. “What Chunk Size and Chunk Overlap Should You Use?” DEV Community; DEV Community. Accessed
November 12, 2024. https://dev.to/peterabel/what-chunk-size-and-chunk-overlap-should-you-use-4338

Proser, Z. 2023. “Retrieval Augmented Generation (RAG).” Pinecone. Accessed April, 2024. https://www.pinecone.io/learn/
retrieval- augmented-generation/.

Qiu, C., T. Tang, T. Yang, and M. J. Chen. 2024. “Learning to Generalize with atent mbedding ptimization for ew- and ero-hot
ross omain ault iagnosis.” Expert Systems with Applications 254: 124280124280. doi:10.1016/j.eswa.2024.124280.

QuantumBlack, A. M. 2023. “Embeddings: The Language of LLMs and GenAl - QuantumBlack, Al by McKinsey - Medium.
Medium; Medium.” Accessed November 12, 2024. https://quantumblack.medium.com/embeddings-the-language-of-llms-
and-genai-b74c2bef105a

Rahman, M. M., G. M. N. Ali, J. Samuel, X. J. Li, K. C. Paul, P. H. J. Chong, et al. 2021. “Socioeconomic Factors Analysis for
COVID-19 US Reopening Sentiment with Twitter and Census Data.” Heliyon 7, no. 2:¢06200.

Rathod, J. D., and G. V. Kale. 2024. “Systematic Study of Prompt Engineering.” International Journal for Research in Applied
Science & Engineering Technology 12, no. VI: 597-613. doi: 10.22214/ijraset.2024.63182

Runalloy. 2024. “What Is Batch Processing? Definition, Use Cases, and Alternatives.” Runalloy.com. Accessed November 12,
2024. https://runalloy.com/blog/what-is-batch-processing/

Rutgers University. 2001. Rutgers University. https://www.rutgers.edu/

Samuel, J., M. M. Rahman, G. M. N. Ali, Y. Samuel, A. Pelaez, P. H. J. Chong, et al. 2020a. “Feeling Positive About
Reopening? New Normal Scenarios from COVID-19 US Reopen Sentiment Analytics.” IEEE Access, 8,
142173-142190.

Samuel, J., G. M. N. Ali, M. M. Rahman, E. Esawi, and Y. Samuel 2020b. “Covid-19 Public Sentiment Insights and Machine
Learning for Tweets Classification.” Information, 11, no. 6: 314.

Samuel, J. 2018. “Information Token Driven Machine Learning for Electronic Markets: Performance Effects in Behavioral
Financial Big Data Analytics.” Journal of Information Systems and Technology Management 14, no. 3: 371-383. doi:
10.4301/S1807-17752017000300005

Samuel, J. 2021. “A Call for Proactive Policies for Informatics and Artificial Intelligence Technologies.” Scholars Strategy Net-
work. Accessed April 23, 2024. https://scholars.org/contribution/call-proactive-policies-informatics-and

Samuel, J., R. Palle, and E. Soares. 2021. “Textual Data Distributions: Kullback Leibler Textual Distributions Contrasts on
GPT-2 Generated Texts, with Supervised, Unsupervised Learning on Vaccine & Market Topics & Sentiment.” Journal of
Big Data Theory & Practice 1, no. 1: 1-18. doi: 10.54116/jbdtp.v1i1.20

Samuel, J., R. Kashyap, Y. Samuel, and A. Pelaez. 2022. “Adaptive Cognitive Fit: Artificial Intelligence Augmented Management
of Information Facets and Representations.” International Journal of Information Management 65: 102505. doi: 10.1016/
j-jjinfomgt.2022.102505

Samuel, J. 2023. “The Critical Need for Transparency and Regulation Amidst the Rise of Powerful Artificial Intelligence
Models. Scholars Strategy Network (SSN, 2023). URL: https://scholars.org/contribution/critical-need-transparency-and-
regulation

Samuel, J., A. Tripathi, and E. Mema. 2024a. “A New Era of Artificial Intelligence Begins. . .Where Will It Lead Us?” Journal
of Big Data and Artificial Intelligence 2, no. 1: 1-4. doi: 10.54116/jbdai.v2i1.40

Samuel, J., T. Khanna, and S. Sundar. 2024b. “Fear of Artificial Intelligence? NLP, ML and LLMs Based Discovery of
Al-Phobia and Fear Sentiment Propagation by AI News.” Available at SSRN: https://ssrn.com/abstract=4755964

Shi, F., P. Qing, D. Yang, N. Wang, Y. Lei, H. Lu, et al. 2023. Prompt Space Optimizing Few-shot Reasoning Success with
Large Language Models. doi: 10.48550/arxiv.2306.03799

Streamlit. 2024. “A Faster Way to Build and Share Data Apps.” Streamlit.io. Accessed April 29, 2024. https://streamlit.io/

Tam, A. 2023. “What are large language models. MachinelL.earningMastery.” com. Accessed November 12, 2024. https://machi-
nelearningmastery. com/what-are-large-language-models/

UOES Rutgers. 2023. “Office of University Online Education Services.” Accessed November 14, 2024. https://uoes.rutgers.edu

UOES TLT. n.d. “Our mission. Our Mission | Teaching and Learning with Technology.” Accessed May 7, 2024. https:/tlt.rut-
gers.edu/our-mission (website has since been replaced by the UOES website).

121

https://doi.org/10.48550/arxiv.2310.04438
https://openai.com/
https://doi.org/10.48550/arXiv.2405.00492
https://dev.to/peterabel/what-chunk-size-and-chunk-overlap-should-you-use-4338
https://www.pinecone.io/learn/retrieval-augmented-generation/
https://www.pinecone.io/learn/retrieval-augmented-generation/
https://doi.org/10.1016/j.eswa.2024.124280
https://quantumblack.medium.com/embeddings-the-language-of-llms-and-genai-b74c2bef105a
https://quantumblack.medium.com/embeddings-the-language-of-llms-and-genai-b74c2bef105a
https://doi.org/10.22214/ijraset.2024.63182
https://runalloy.com/blog/what-is-batch-processing/
https://www.rutgers.edu/
https://doi.org/10.4301/S1807-17752017000300005
https://scholars.org/contribution/call-proactive-policies-informatics-and
https://doi.org/10.54116/jbdtp.v1i1.20
https://doi.org/10.1016/j.ijinfomgt.2022.102505
https://doi.org/10.1016/j.ijinfomgt.2022.102505
https://scholars.org/contribution/critical-need-transparency-and-regulation
https://scholars.org/contribution/critical-need-transparency-and-regulation
https://doi.org/10.54116/jbdai.v2i1.40
https://ssrn.com/abstract=4755964
https://doi.org/10.48550/arxiv.2306.03799
https://streamlit.io/
https://machinelearningmastery.com/what-are-large-language-models/
https://uoes.rutgers.edu
https://tlt.rutgers.edu/our-mission
https://tlt.rutgers.edu/our-mission

JBDAI Vol. 3 No. 1, pp. 102-122/2025

Vasilis, T. 2024. “What is Hugging Face &2 and why use it for NLP and LLMs? Apify Blog.” Accessed April 29, 2024. https://
blog.apify. com/what-is-hugging-face/

Wang, X., Z. Hu, P. Lu, Y. Zhu, J. Zhang, S. Subramaniam, et al. 2024. “SCIBENCH: Evaluating College-Level Scientific
Problem-Solving Abilities of Large Language Models.” Accessed May 5, 2024. https://arxiv.org/pdf/2307.10635

Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, et al. 2020. “HuggingFace’s Transformers: State-of-the-art
Natural Language Processing.” Preprint, submitted July 14. https://doi.org/10.48550/arXiv.1910.03771

Xu, Z., S. Jain, and M. Kankanhalli. 2024. “Hallucination Is Inevitable: An Innate Limitation of Large Language Models.”
Preprint, submitted February 2025. https://doi.org/10.48550/arXiv.2401.11817

Ye, Q., M. Axmed, R. Pryzant, and F. Khani. 2024. “Prompt Engineering a Prompt Engineer.” Preprint, submitted July 3.
https://doi.org/10.48550/arXiv.2311.05661

Yu, P., and H. Ji. 2023. “Information Association for Language Model Updating by Mitigating LM-Logical Discrepancy.”
Preprint, submitted February 2024. https://doi.org/10.48550/arXiv.2305.18582

122

https://blog.apify.com/what-is-hugging-face/
https://blog.apify.com/what-is-hugging-face/
https://arxiv.org/pdf/2307.10635
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2311.05661
https://doi.org/10.48550/arXiv.2305.18582

	s1
	s2
	s2A
	s2B
	s2C
	s2D
	s2E
	s2F
	s2G
	s2H
	s2I
	s2J
	s3
	s3A
	f1
	f2
	s3B
	s3C
	f3
	f4
	f5
	f6
	f7
	f8
	f9
	f10
	f11
	f12
	s3D
	f13
	f14
	s4
	s5
	c3
	c4
	c5
	c6
	c5006
	c7
	c8
	c5008
	c9
	c10
	c16
	c11
	c12
	c13
	c14
	c15
	c17
	c18
	c55
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c28
	c29
	c5029
	c30
	c31
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c5041
	c41
	c5043
	c5044
	c44
	c45
	c46
	c27
	c48
	c47
	c43
	c49
	c50
	c51
	c32
	c52
	c53
	c54
	c56
	c57
	c58
	c59

